	Meden School Curriculum Planning								
Subject	Chemistry	Year Group	13	Sequence No.	Торіс	3.3.14 Synthesis			
						3.3.15 NMR			
						3.3.16			
						Chromatography			

Retrieval	Core Knowledge	Student Thinking
What do teachers need to retrieve from students before they start teaching new content ?	What specific ambitious knowledge do teachers need to teach students in this sequence of learning?	What real life examples can be applied to this sequence of learning to development of our students thinking, encouraging them to see the inequalities around them and 'do something about them!'
GCSE Chemistry C8	3.3.14 Organic Synthesis	
Chromatography	The synthesis of an organic compound can involve several steps.	Constant need to
and Rf values	Students should be able to:	improve the
	• explain why chemists aim to design processes that do not require a solvent and that use non-hazardous	manafucturing
A Level Bonding,	starting materials	processes used to make
polar bonds and	• explain why chemists aim to design production methods with fewer steps that have a high percentage	chemicals.
electronegative	atom economy	
elements.	• use reactions in this specification to devise a synthesis, with up to four steps, for an organic compound.	The introduction of LCA's has forced
A Level 3.3.1-3.3.2	3.3.15 NMR	companies to consider
Sections on	Appreciation that scientists have developed a range of analytical techniques which together enable the structures	the impact of
nomenclature and	of new compounds to be confirmed.	production from"cradle
isomers	Nuclear magnetic resonance (NMR) gives information about the position of 13C or 1H atoms in a molecule. 13C NMR gives simpler spectra than 1H NMR.	to grave"
	The use of the δ scale for recording chemical shift. Chemical shift depends on the molecular environment.	Research in "Green
A level 3.3. Organic	Integrated spectra indicate the relative numbers of 1H atoms in different environments.	Chemistry"
Chemistry All	1H NMR spectra are obtained using samples dissolved in deuterated solvents or CCl4	,
reactions and	The use of tetramethylsilane (TMS) as a standard.	Chemistry, Green
mechanisms	Students should be able to:	Principles and

 explain why TMS is a suitable substance to use as a st 	andard	Sustainable Processes
 use 1H NMR and 13C NMR spectra and chemical shift 	data from the Chemistry Data Booklet to suggest	<u>(BSc) - Undergraduate,</u>
possible structures or part structures for molecules		University of York
 use integration data from 1H NMR spectra to determ 	ine the relative numbers of equivalent protons in the	
molecule		
 use the n+1 rule to deduce the spin–spin splitting pat 	terns of adjacent, non-equivalent protons, limited to	
doublet, triplet and quartet formation in aliphatic compound	S.	
3.3.16 Chromatography		
Chromatography can be used to separate and identify the co	mponents in a mixture.	
Types of chromatography include:		
 thin-layer chromatography (TLC) – a plate is coated w 	ith a solid and a solvent moves up the plate	
 column chromatography (CC) – a column is packed w 	ith a solid and a solvent moves down the column	
 gas chromatography (GC) – a column is packed with a 	solid or with a solid coated by a liquid, and a gas is	
passed through the column under pressure at high temperat	ure.	
Separation depends on the balance between solubility in the	moving phase and retention by the stationary phase.	
Retention times and Rf values are used to identify different s	ubstances.	
The use of mass spectrometry to analyse the components se	parated by GC.	
Students should be able to:		
 calculate Rf values from a chromatogram 		
compare retention times and Rf values with standard	s to identify different substances.	
Students could use thin-layer chromatography to identify an	algesics.	
Students could use thin-layer chromatography to identify tra	nsition metal ions in a solution.	
Required practical 12		
Separation of species by thin-layer chromatography.		