Meden School Curriculum Planning									
Subject	Chemistry	Year Group	13	Sequence No.		Торіс	3.3.13 Amino		
							Acids, Proteins		
							and DNA		

Retrieval	Core Knowledge	Student Thinking
What do teachers need to retrieve from students before they start teaching new content ?	What specific ambitious knowledge do teachers need to teach students in this sequence of learning?	What real life examples can be applied to this sequence of learning to development of our students thinking, encouraging them to see the inequalities around them and 'do something about them!'
GCSE Biology B2 Enzyme activity GCSE Biology B6 DNA structure GCSE Chemistry C8 Chromatography and Rf values	 3.3.13.1 Amino Acids Amino acids have both acidic and basic properties, including the formation of zwitterions. Students should be able to draw the structures of amino acids as zwitterions and the ions formed from amino acids: in acid solution in alkaline solution. 3.3.13.2 Proteins 	
A Level Bonding, polar bonds and electronegative elements. A Level 3.3.1-3.3.2 Sections on	 Proteins Proteins are sequences of amino acids joined by peptide links. The importance of hydrogen bonding and sulfur–sulfur bonds in proteins. The primary, secondary (α-helix and β–pleated sheets) and tertiary structure of proteins. Hydrolysis of the peptide link produces the constituent amino acids. Amino acids can be separated and identified by thin-layer chromatography. Amino acids can be located on a chromatogram using developing agents such as ninhydrin or ultraviolet light and identified by their Rf values. Students should be able to: 	

nomenclature and	draw the structure of a peptide formed from up to three amino acids	
isomers	 draw the structure of the amino acids formed by hydrolysis of a peptide 	
	 identify primary, secondary and tertiary structures in diagrams 	
	 explain how these structures are maintained by hydrogen bonding and S–S bonds 	
A level 3.3.3.1	 calculate Rf values from a chromatogram. 	
Nucleophiles and		
Nucleophilic	3.3.13.3 Enzymes	
Substitution	Enzymes are proteins.	
Reactions	The action of enzymes as catalysts, including the concept of a stereospecific active site that binds to a substrate	
	molecule.	
A level 3.3.11.2 & 3	The principle of a drug acting as an enzyme inhibitor by blocking the active site.	
Base properties and	Computers can be used to help design such drugs.	
amines as	Students should be able to explain why a stereospecific active site can only bond to one enantiomeric form of a	
nucleophiles	substrate or drug.	
A level 3.3.12.1	3.3.13.4 DNA	
Condensation		
Polymers	The structures of the phosphate ion, 2-deoxyribose (a pentose sugar) and the four bases adenine, cytosine, guanine and thymine are given in the Chemistry Data Booklet.	
POlymers	A nucleotide is made up from a phosphate ion bonded to 2-deoxyribose which is in turn bonded to one of the	
	four bases adenine, cytosine, guanine and thymine.	
	A single strand of DNA (deoxyribonucleic acid) is a polymer of nucleotides linked by covalent bonds between the	
	phosphate group of one nucleotide and the 2-deoxyribose of another nucleotide. This results in a sugar-	
	phosphate group of one nucleotide and the 2-deoxynbose of another nucleotide. This results in a sugar- phosphate- sugar-phosphate polymer chain with bases attached to the sugars in the chain.	
	DNA exists as two complementary strands arranged in the form of a double helix.	
	Students should be able to explain how hydrogen bonding between base pairs leads to the two complementary	
	strands of DNA.	
	3.3.13.5 Action of Anticancer Drugs	
	The Pt(II) complex cisplatin is used as an anticancer drug.	Appreciate that society
		needs to assess the

Cisplatin prevents DNA replication in cancer cells by a ligand replacement reaction with DNA in which a bond is	balance between the
formed between platinum and a nitrogen atom on guanine.	benefits and the
Students should be able to:	adverse effects of
explain why cisplatin prevents DNA replication	drugs, such as the
 explain why such drugs can have adverse effects. 	anticancer drug
	cisplatin.