Meden School Curriculum Planning									
Subject	Chemistry	Year Group	13	Sequence No.		Торіс	3.3.11 Amines		
							3.3.12		
							Polymers		

Retrieval	Core Knowledge	Student Thinking
What do teachers need to retrieve from students before they start teaching new content ?	What specific ambitious knowledge do teachers need to teach students in this sequence of learning?	What real life examples can be applied to this sequence of learning to development of our students thinking, encouraging them to see the inequalities around them and 'do something about them!'
A Level Bonding, polar bonds and electronegative elements.	3.3.11.1 Preparation of Amines Primary aliphatic amines can be prepared by the reaction of ammonia with halogenoalkanes and by the reduction of nitriles. Aromatic amines, prepared by the reduction of nitro compounds, are used in the manufacture of dyes.	
A Level 3.3.1-3.3.2 Sections on nomenclature and isomers A level 3.3.3.1 Halogenoalkanes	 3.3.11.2 Base Properties Amines are weak bases. The difference in base strength between ammonia, primary aliphatic and primary aromatic amines. Students should be able to explain the difference in base strength in terms of the availability of the lone pair of electrons on the N atom. To include the inductive effect of alkyl groups and the withdrawal of electrons due to delocalization effect of benzene rings. 	
reactions A level 3.3.3.1 Nucleophiles and	 3.3.11.3 Nucleophilic Properties Amines are nucleophiles. The nucleophilic substitution reactions of ammonia and amines with halogenoalkanes to form primary, secondary, tertiary amines and quaternary ammonium salts. 	

Nucleophilic	The use of quaternary ammonium salts as cationic surfactants.						
Substitution	The nucleophilic addition-elimination reactions of ammonia and primary amines with acyl chlorides and acid						
reactions	anhydrides.						
	Students should be able to outline the mechanisms of:						
A level 3.3.4.3	these nucleophilic substitution reactions						
Addition Polymers	• the nucleophilic addition–elimination reactions of ammonia and primary amines with acyl chlorides.						
	3.3.12.1 Condensation Polymers						
	Condensation polymers are formed by reactions between:	As a global citizen,					
	dicarboxylic acids and diols	there is a need to use					
	dicarboxylic acids and diamines	plastics responsibily					
	amino acids.	and to limit their					
	The repeating units in polyesters (eg Terylene) and polyamides (eg nylon 6,6 and Kevlar) and the linkages	impact on the					
	between these repeating units.	environment					
	Typical uses of these polymers.						
	Students should be able to:	A Guide to Plastic in the					
	 draw the repeating unit from monomer structure(s) 	<u>Ocean (noaa.gov)</u>					
	 draw the repeating unit from a section of the polymer chain 						
	 draw the structure(s) of the monomer(s) from a section of the polymer 						
	 explain the nature of the intermolecular forces between molecules of condensation polymers. 	Investigate the need to					
	Students could make nylon	replace crude oil					
		polymers with					
	3.3.12.2 Biodegradability and Disposal of Polymers	biodegradable, plant					
	Polyalkenes are chemically inert and non-biodegradable.	based polymers.					
	Polyesters and polyamides can be broken down by hydrolysis and are biodegradable.						
	The advantages and disadvantages of different methods of disposal of polymers, including recycling.	Everything you need to					
	Students should be able to explain why polyesters and polyamides can be hydrolysed but polyalkenes cannot.	know about plant-					
		based plastics					
		National Geographic					