Meden School Curriculum Planning							
Subject	Physics	Year Group	13	Sequence No.		Торіс	Capacitance
							and Magnetic
							Fields

Retrieval	Core Knowledge	Student Thinking
What do teachers need retrieve from students before they start teaching new content ?	What specific ambitious knowledge do teachers need teach students in this sequence of learning?	What real life examples can be applied to this sequence of learning to development of our students thinking, encouraging them to see the inequalities around them and 'do something about them!'
AS Electricity topic	3.7.4 Capacitance	
	3.7.4.1 Capacitance	
	Definition of capacitance: $C = \frac{Q}{v}$	
	3.7.4.2 Parallel plate capacitor	
	Dielectric action in a capacitor <i>C</i> = Relative permittivity and dielectric constant.	
	The action of a simple polar molecule that rotates in the presence of an electric field. Investigate the relationship between <i>C</i> and the dimensions of a parallel-plate capacitor eg using a capacitance meter.	
	3.7.4.3 Energy stored by a capacitor	

Interpretation of the area under a graph of charge against pd.	
Use the following equations $E = 0.5QV = 0.5CV^2 = 0.5Q/C^2$	
3.7.4.3 Capacitor charge and discharge	
Graphical representation of charging and discharging of capacitors through resistors. Corresponding graphs for <i>Q</i> , <i>V</i> and <i>I</i> against time for charging and	
discharging.	
Interpretation of gradients and areas under graphs where appropriate.	
Time constant <i>RC</i> .	A fan is an example of the daily use of
Calculation of time constants including their determination from graphical data. Time to hold $T_{\rm eff} = 0.000$	gadgets and devices that make use of
Time to have, $T_{\frac{1}{2}} = 0.69RC$	capacitors for their basic operation. Here, a
Quantitative treatment of capacitor discharge, $Q = Q = -RC$	rotatory motion of the fan blades and is
0	also responsible to sustain the spinning
	motion of the moving blades. For this
Use of the corresponding equations for V and I.	purpose, the capacitor generates the
t	necessary magnetic flux required to
Quantitative treatment of capacitor charge, $Q = Q 1 - e - RC$	produce an adequate magnitude of torque
	force.
Required practical 9: Investigation of the charge and discharge of capacitors	Canacitors also come in handy in cases of
Analysis techniques should include log-linear plotting leading to a determination of	emergency shutdowns. For instance, some
the time constant. RC	of the emergency shutdown systems
	designed for computers contain an internal
	electronic circuit that is embedded with an
	array of capacitors on the output side. The
3.7.5.Magnetic fields	main advantage of using such systems is the
	high reliability and minimum requirement

	3.7.5.1 Magnetic flux density	of additional charging circuitry. This is
	Force on a surrent corruing wire in a magnetic field, <i>F</i> = <i>B</i> //	because the capacitors get charged
	Force on a current-carrying wire in a magnetic field: $F = BH$	automatically when the device is turned on.
	rule.	
	Magnetic flux density B and definition of the tesla.	
	Required practical 10: Investigate how the force on a wire varies with flux density,	
	current and length of wire using a top pan balance.	Computer data storage data are stored in hard disk drives on the
	3.7.5.2 Moving charges in a magnetic field	basis of magnetism. There's a coating of
	En en en els analistations de la francés de la Cald	magnetic material on the disc; consisting of
	Force on charged particles moving in a magnetic field,	billions or even trillions of tiny magnets.
	F = BQV when the field is perpendicular to velocity. Direction of force on positive	with the use of an electromagnetic head,
	and negative charged particles.	data is stored in the disc.
	Circular path of particles; application in devices such as the cyclotron.	
GCSE P7 Magnets and		
Electromagnetism, including	3.7.5.3 Magnetic flux and flux linkage	
F=BIL and Flemings Left Hand		
Rule	Magnetic flux defined by $U = BA$ where B is normal to A.	
	Flux linkage as N 🛙 where N is the number of turns cutting the flux.	
	Flux and flux linkage passing through a rectangular coll rotated in a magnetic	Microwave ovens also work with the help
		of the magnetic force. They use a device
	flux linkage N 🗈 = BAN cos	called a magnetron to generate the power for cooking. A magnetron is a vacuum tube
	Required practical 11: Investigate, using a search coil and oscilloscope, the effect	designed to cause electrons to circulate in a
	on magnetic flux linkage of varying the angle between a search coil and magnetic	loop inside the tube. A magnet is placed
	field direction	around the tube to provide the magnetic
		force that causes the electrons to move in a
	3.7.5.4 Electromagnetic induction	Іоор

Simple experimental phenomena. Faraday's and Lenz's laws.	
Magnitude of induced emf = rate of change of flux linkage	
$P = N \Delta P$	
Δt	
Applications such as a straight conductor moving in a magnetic field.	
emf induced in a coil rotating uniformly in a magnetic field:	
$\mathbb{P} = BAN \mathbb{P}sin \mathbb{P}t$	
3.7.5.5 Alternating currents	
Sinusoidal voltages and currents only: root mean square, neak and neak-to-neak	
values for sinusoidal waveforms only.	
I = I0: V = V0	
rms 2 rms 2	All chargers for phones, ipads etc need to
Application to the calculation of mains electricity peak and peak-to-peak voltage	include transformers which not only
values.	convert AC to DC but need to drop the
Use of an oscilloscope as a dc and ac voltmeter, to measure time intervals and	voltage from 230V to about 6V
frequencies, and to display ac waveforms.	
	Charger plugs get warm even if not
3.7.5.6 The operation of a transformer	connected to the device which means they
	are drawing electricity and converting the
<u>_N s</u> V <u>s</u>	energy into wasted thermal. This means
The transformer equation: $N = V$	chargers left plugged in are costing money
рр	on your electricity bill
Transformer efficiency = $\frac{15V}{10}$	
IV V Draduction of addy currents	
Causas of inofficiancias in a transformar	

Transmission of electrical power at high voltage including calculations of power loss in transmission lines.	