Meden School Curriculum Planning						
Subject	Biology	Year Group	13	Sequence No.	Торіс	3.8 Control of
						Gene
						Expression

Retrieval	Core Knowledge	Student Thinking
What do teachers need retrieve from students before they start teaching new content ?	What specific ambitious knowledge do teachers need teach students in this sequence of learning?	What real life examples can be applied to this sequence of learning to development of our students thinking, encouraging them to see the inequalities around them and 'do something about them!'
AQA GCSE Biology B1 Cell Biology	3.8.1 Alteration of the sequence of bases in DNA can alter the structure of proteins	Should everyone be genetically tested to see
AQA GCSE Biology	Gene mutations might arise during DNA replication. They include addition, deletion, substitution, inversion, duplication and translocation of bases.	what onogenes they carry.
B6 Inheritance, Variation and Evolution	 Gene mutations occur spontaneously. The mutation rate is increased by mutagenic agents. Mutations can result in a different amino acid sequence in the encoded polypeptide. Some gene mutations change only one triplet code. Due to the degenerate nature of the genetic code, not all such mutations result in a change to the encoded amino acid. Some gene mutations change the nature of all base triplets downstream from the mutation, ie result in a 	Ethical debate: "If people know their genetics they can chose a healthier lifestyle"
AQA A level Biology 3.4 Genetic information,	frame shift. Relate the nature of a gene mutation to its effect on the encoded polypeptide.	Or
variation (3.4.1 - 4)	3.8.2.1 Most of a cell's DNA is not translated Totipotent cells can divide and produce any type of body cell.	"Should people have to life with the knowledge

During development, totipotent cells translate only part of their DNA, resulting in cell specialisation.	that they are more likely
Totipotent cells occur only for a limited time in early mammalian embryos.	to develop a certain
Pluripotent cells are found in embryos; multipotent and unipotent cells are found in mature mammals and can	disease/cancer"
divide to form a limited number of different cell types	
 Pluripotent stem cells can divide in unlimited numbers and can be used in treating human disorders. 	
 Unipotent cells, exemplified by the formation of cardiomyocytes. 	
Induced pluripotent stem cells (iPS cells) can be produced from adult somatic cells using appropriate protein	
transcription factors.	
Evaluate the use of stem cells in treating human disorders.	
3.8.2.2 Regulation of transcription and translation	
In eukaryotes, transcription of target genes can be stimulated or inhibited when specific transcriptional factors	
move from the cytoplasm into the nucleus. The role of the steroid hormone, oestrogen, in initiating transcription.	
Epigenetic control of gene expression in eukaryotes.	
Epigenetics involves heritable changes in gene function, without changes to the base sequence of DNA. These	
changes are caused by changes in the environment that inhibit transcription by:	
 increased methylation of the DNA or 	
 decreased acetylation of associated histones. 	
The relevance of epigenetics on the development and treatment of disease, especially cancer.	
In eukaryotes and some prokaryotes, translation of the mRNA produced from target genes can be inhibited by	
RNA interference (RNAi).	
 Interpret data provided from investigations into gene expression 	
• Evaluate appropriate data for the relative influences of genetic and environmental factors on phenotype.	
3.8.2.3 Gene Expression and Cancer	
The main characteristics of benign and malignant tumours. The role of the following in the development of	
tumours:	
 tumour suppressor genes and oncogenes 	
 abnormal methylation of tumour suppressor genes and oncogenes 	
 increased oestrogen concentrations in the development of some breast cancers. 	

 evaluate evidence showing correlations between genetic and environmental factors and various forms of 	
cancer	
interpret information relating to the way in which an understanding of the roles of oncogenes and tumour	
suppressor genes could be used in the prevention, treatment and cure of cancer.	
3.8.3 Using Genome Projects	
Sequencing projects have read the genomes of a wide range of organisms, including humans.	
Determining the genome of simpler organisms allows the sequences of the proteins that derive from the	
genetic code (the proteome) of the organism to be determined. This may have many applications, including the	
identification of potential antigens for use in vaccine production.	
In more complex organisms, the presence of non-coding DNA and of regulatory genes means that knowledge of	
the genome cannot easily be translated into the proteome.	
Sequencing methods are continuously updated and have become automated.	
3.8.4.1 Recombinant DNA Technology Recombinant DNA technology involves the transfer of fragments of DNA from one organism, or species, to another. Since the genetic code is universal, as are transcription and translation mechanisms, the transferred DNA can be translated within cells of the recipient (transgenic) organism.	
Recombinant DNA technology involves the transfer of fragments of DNA from one organism, or species, to	
Recombinant DNA technology involves the transfer of fragments of DNA from one organism, or species, to another. Since the genetic code is universal, as are transcription and translation mechanisms, the transferred DNA can be translated within cells of the recipient (transgenic) organism. Fragments of DNA can be produced by several methods, including:	
Recombinant DNA technology involves the transfer of fragments of DNA from one organism, or species, to another. Since the genetic code is universal, as are transcription and translation mechanisms, the transferred DNA can be translated within cells of the recipient (transgenic) organism. Fragments of DNA can be produced by several methods, including: conversion of mRNA to complementary DNA (cDNA), using reverse transcriptase	
Recombinant DNA technology involves the transfer of fragments of DNA from one organism, or species, to another. Since the genetic code is universal, as are transcription and translation mechanisms, the transferred DNA can be translated within cells of the recipient (transgenic) organism. Fragments of DNA can be produced by several methods, including:	
Recombinant DNA technology involves the transfer of fragments of DNA from one organism, or species, to another. Since the genetic code is universal, as are transcription and translation mechanisms, the transferred DNA can be translated within cells of the recipient (transgenic) organism. Fragments of DNA can be produced by several methods, including: conversion of mRNA to complementary DNA (cDNA), using reverse transcriptase using restriction enzymes to cut a fragment containing the desired gene from DNA creating the gene in a 'gene machine'.	Positive Applications
Recombinant DNA technology involves the transfer of fragments of DNA from one organism, or species, to another. Since the genetic code is universal, as are transcription and translation mechanisms, the transferred DNA can be translated within cells of the recipient (transgenic) organism. Fragments of DNA can be produced by several methods, including: conversion of mRNA to complementary DNA (cDNA), using reverse transcriptase using restriction enzymes to cut a fragment containing the desired gene from DNA creating the gene in a 'gene machine'. Fragments of DNA can be amplified by <i>in vitro</i> and <i>in vivo</i>	
Recombinant DNA technology involves the transfer of fragments of DNA from one organism, or species, to another. Since the genetic code is universal, as are transcription and translation mechanisms, the transferred DNA can be translated within cells of the recipient (transgenic) organism. Fragments of DNA can be produced by several methods, including: conversion of mRNA to complementary DNA (cDNA), using reverse transcriptase using restriction enzymes to cut a fragment containing the desired gene from DNA creating the gene in a 'gene machine'.	Positive Applications the Genome project include

The addition of promoter and terminator regions to the fragments of DNA.	Science	
The use of restriction endonucleases and ligases to insert fragments of DNA into vectors. Transformation of	A database on the	
host cells using these vectors.	human DNA sequence	
The use of marker genes to detect genetically modified (GM) cells or organisms. (Students will not be required	helps to solve some of	
to recall specific marker genes in a written paper.)	the basic questions	
Interpret information relating to the use of recombinant DNA technology	related to gene	
evaluate the ethical, financial and social issues associated with the use and ownership of recombinant DNA	expression,	
technology in agriculture, in industry and in medicine	differentiation and	
balance the humanitarian aspects of recombinant DNA technology with the opposition from	specialization	
environmentalists and anti-globalisation activists	mechanisms, immune	
relate recombinant DNA technology to gene therapy.	processes, among	
	others.	
	Information	
	Demonstrate the	
	predisposition to acquire	
	certain diseases, or the	
3.8.4.2 Differences in DNA between individuals of the same species can be exploited for identification and	aptitude to perform a	
diagnosis of heritable conditions	certain job. In addition, it	
The use of labelled DNA probes and DNA hybridisation to locate specific alleles of genes.	allows the elaboration of	
The use of labelled DNA probes that can be used to screen patients for heritable conditions, drug responses or	a genetic identity card	
health risks.	for unequivocal	
The use of this information in genetic counselling and personalised medicine.	identification for various	
Evaluate information relating to screening individuals for genetically determined conditions and drug	purposes, including	
responses.	judicial ones.	
	<u>Therapy</u>	
3.8.4.3 Genetic Fingerprinting	Prevent, diagnose and	
An organism's genome contains many variable number tandem repeats (VNTRs). The probability of two	cure genetic diseases by	
individuals having the same VNTRs is very low.	inserting healthy genes	
The technique of genetic fingerprinting in analysing DNA fragments that have been cloned by PCR, and its	or modifying the	
use in determining genetic relationships and in determining the genetic variability within a population.		

The use of genetic fingerprinting in the fields of forensic science, medical diagnosis, animal and plant breeding.	expression of harmful genes.
explain the biological principles that underpin genetic fingerprinting techniques interpret data showing the results of gel electrophoresis to separate DNA fragments	
explain why scientists might use genetic fingerprinting in the fields of forensic science, medical diagnosis, animal and plant breeding.	Negative applications Eugenics. Selecting individuals on the basis of their genetic information and attempting to modify the genetic heritage of gametes to obtain individuals with predetermined
	characteristics. Ethical and moral debates needed on all levels of genetic engineering. "Just because we can, should we" "Should scientific
	research be stopped if there is potential dangers associated with it" "Where should funding be given"

	"Should DNA profiling be allowed"
	" Should there be a national DNA database"