Meden School Curriculum Planning										
Subject	Chemistry	Year Group	12	Sequence No.		Торіс	3.3.3 & 3.3.4			
							Halogenoalkanes			
							and Alkenes			

Retrieval	Core Knowledge	Student Thinking
What do teachers need to retrieve from students before they start teaching new content ?	What specific ambitious knowledge do teachers need to teach students in this sequence of learning?	What real life examples can be applied to this sequence of learning to development of our students thinking, encouraging them to see the inequalities around them and 'do something about them!'
GCSE C7 Organic	3.3.3.1 Nucleophilic Substitution of Halogenoalkanes	
Chemistry	Halogenoalkanes contain polar bonds.	
	Halogenoalkanes undergo substitution reactions with the nucleophiles OH–, CN– and NH3	
A Level Bonding,	Students should be able to:	
polar bonds and	 outline the nucleophilic substitution mechanisms of these reactions 	
electronegative	 explain why the carbon-halogen bond enthalpy influences the rate of reaction. 	
elements.	Students could follow instructions when carrying out test-tube hydrolysis of halogenoalkanes to show their	
	relative rates of reaction.	
A Level 3.3.1-3.3.2	Students could prepare a chloroalkane, purifying the product using a separating funnel and distillation.	
Sections on		
nomenclature and	3.3.3.2 Elimination	
isomers and	The concurrent substitution and elimination reactions of a halogenoalkane (eg 2-bromopropane with potassium	
products of cracking	nyaroxide).	
	Students snould be able to:	
	• explain the role of the reagent as both nucleophile and base	
	outline the mechanisms of these reactions.	

3.3.3.3 Ozone Depletion	Research opportunity
Chlorine atoms are formed in the upper atmosphere when ultraviolet radiation causes C–Cl bonds in	Students could
chlorofluorocarbons (CFCs) to break.	investigate the
Chlorine atoms catalyse the decomposition of ozone and contribute to the hole in the ozone layer.	role of chemists
Appreciate that results of research by different groups in the scientific community provided evidence for	in the
legislation to ban the use of CFCs as solvents and refrigerants. Chemists have now developed alternative chlorine- free compounds.	introduction of legislation to ban the
Students should be able to use equations, such as the following, to explain how chlorine atoms catalyse	use of CFCs and in
decomposition of ozone:	finding replacements.
$CI \bullet + O3 \rightarrow CIO \bullet + O2$ and $CIO \bullet + O3 \rightarrow 2O2 + CI \bullet$	
3.3.4.1 Alkenes: Structure, Bonding and Reactivity	
Alkenes are unsaturated hydrocarbons.	
Bonding in alkenes involves a double covalent bond, a centre of high electron density.	
3.3.4.2 Addition Reactions of Alkenes	
Electrophilic addition reactions of alkenes with HBr, H2SO4 and Br2	
The use of bromine to test for unsaturation.	
The formation of major and minor products in addition reactions of unsymmetrical alkenes.	
Students should be able to:	
outline the mechanisms for these reactions	
• explain the formation of major and minor products by reference to the relative stabilities of primary,	
secondary and tertiary carbocation intermediates.	
Students could test organic compounds for unsaturation using bromine water and record their observations.	
3.3.4.3 Addition Polymers	
Addition polymers are formed from alkenes and substituted alkenes.	
The repeating unit of addition polymers.	

IUPAC rules for naming addition polymers.	
Addition polymers are unreactive.	
Appreciate that knowledge and understanding of the production and properties of polymers has developed over	
time.	
Typical uses of poly(chloroethene), commonly known as PVC, and how its properties can be modified using a	
plasticiser.	
Students should be able to:	
draw the repeating unit from a monomer structure	
 draw the repeating unit from a section of the polymer chain 	
 draw the structure of the monomer from a section of the polymer 	
explain why addition polymers are unreactive	
• explain the nature of intermolecular forces between molecules of polyalkenes.	
Students could make poly(phenylethene) from phenylethene.	
	,,