Meden School Curriculum Planning							
Subject	Biology	Year Group	12	Sequence No.		Торіс	3.3 Organisms
							Exchange
							Substances
							With Their
							Environment:

Retrieval	Core Knowledge	Student Thinking
What do teachers need retrieve from students before they start teaching new content?	What specific ambitious knowledge do teachers need teach students in this sequence of learning?	What real life examples can be applied to this sequence of learning to development of our students thinking, encouraging them to see the inequalities around them and 'do something about them!'
AQA GCSE Biology B2 Organisation, enzymes and digestion, the lungs, the circulatory system. Cardiovascular disease, health and disease.	 3.3.1 Surface Area To Volume Ratio The relationship between the size of an organism or structure and its surface area to volume ratio. Changes to body shape and the development of systems in larger organisms as adaptations that facilitate exchange as this ratio reduces. Appreciate the relationship between surface area to volume ratio and metabolic rate. 	
AQA GCSE Biology B1 Diffusion, exchange surfaces A level Biology 3.1.1-4 Biological molecules	 3.3.2 Gas Exchange Adaptations of gas exchange surfaces, shown by gas exchange: across the body surface of a single-celled organism in the tracheal system of an insect (tracheae, tracheoles and spiracles) across the gills of fish (gill lamellae and filaments including the counter-current principle) 	Why is smoking still a huge problem in some communities/countries? How can we help to ensure that all

A level Biology 3.2.3	 by the leaves of dicotyledonous plants (mesophyll and stomata). 	communities understand the
Transport across	Structural and functional compromises between the opposing needs for efficient gas	potential dangerous of smoking.
membrances	exchange and the limitation of water loss shown by terrestrial insects and xerophytic	
	plants.	The tobacco industry is a vital
	The gross structure of the human gas exchange system limited to the alveoli, bronchioles,	source of income for some
	bronchi, trachea and lungs.	countries what should the global
	The essential features of the alveolar epithelium as a surface over which gas exchange takes	community do to help support the
	place.	reduction on economic reliance on
	Ventilation and the exchange of gases in the lungs. The mechanism of breathing to include	tobacco.
	the role of the diaphragm and the antagonistic interaction between the external and	
	internal intercostal muscles in bringing about pressure changes in the thoracic cavity.	Air pollution in cities is a major
	 Interpret information relating to the effects of lung disease on gas exchange and/or 	contributor to lung disease and
	ventilation	asthma. What should governments
	 Interpret data relating to the effects of pollution and smoking on the incidence of 	be doing to protect individuals?
	lung disease	
	 Analyse and interpret data associated with specific risk factors and the 	
	incidence of lung disease	
	 Evaluate the way in which experimental data led to statutory restrictions on the 	
	sources of risk factors	
	 Recognise correlations and causal relationships. 	
	2.2.2 Disection and the metion	
	3.3.3 Digestion and Absorption	
	During digestion, large biological molecules are hydrolysed to smaller molecules that can be	
	absorbed across cell memoranes.	
	Digestion in mammals of:	
	 Carbonyurates by amylases and memorane-bound disacchandases Jipids by lipace, including the action of bile colts. 	
	 Inplus by lipase, including the action of bile saits protoins by ondepentideses, evenentideses and membrane, bound disectideses 	
	 proteins by endopeptidases, exopeptidases and membrane- bound dipeptidases. Machanisms for the observation of the products of direction by calls lining the ilourn of 	
	iviechanisms for the absorption of the products of digestion by cells lining the lieum of	
	mammais, to include:	

 co-transport mechanisms for the absorption of amino acids and of monosaccharides the role of micelles in the absorption of lipids. 	
3.3.4.1 Mass Transport in Animals	
Over large distances, efficient movement of substance to and from exchange surfaces is provided by mass transport.	
The haemoglobins are a group of chemically similar molecules found in many different organisms. Haemoglobin is a protein with a quaternary structure.	
The role of haemoglobin and red blood cells in the transport of oxygen. The loading, transport and unloading of oxygen in relation to the oxyhaemoglobin dissociation curve.	
The cooperative nature of oxygen binding to show that the change in shape of haemoglobin caused by binding of the first oxygens makes the binding of further oxygens easier. The effects of carbon dioxide concentration on the dissociation of oxyhaemoglobin (the Bohr effect).	
Many animals are adapted to their environment by possessing different types of haemoglobin with different oxygen transport properties. The general pattern of blood circulation in a mammal. Names are required only of the coronary arteries and of the blood vessels entering and leaving the heart, lungs and kidneys. The gross structure of the human heart. Pressure and volume changes and associated valve movements during the cardiac cycle that maintain a unidirectional flow of blood. The structure of arteries, arterioles and veins in relation to their function.	

Students could be given values of cardiac output (CO) and one other measure, requiring	
them to change the subject of the equation: CO = stroke volume × heart rate	
The structure of capillaries and the importance of capillary beds as exchange surfaces. The	
formation of tissue fluid and its return to the circulatory system.	
Analyse and interpret data relating to pressure and volume changes during the cardiac	
Cycle Analyse and interpret data associated with specific rick factors and the insidence of	
cardiovascular disease	
Evaluate conflicting evidence associated with risk factors affecting cardiovascular	
disease	
Recognise correlations and causal relationships	
Required practical 5: Dissection of animal or plant gas exchange system or mass	
transport system or of organ within such a system.	
3.3.4.2 Mass Transport in Plants	
Xylem as the tissue that transports water in the stem and leaves of plants. The cohesion- tension theory of water transport in the xylem	
Phloem as the tissue that transports organic substances in plants. The mass flow hypothesis	
for the mechanism of translocation in plants. The use of tracers and ringing experiments to	The obesity crisis is one of the
investigate transport in plants.	major health risks of developed
Recognise correlations and causal relationships	societies.
Interpret evidence from tracer and ringing experiments and to evaluate the evidence for and	
against the mass flow hypothesis.	Inequalities in obesity. In the
Students could set up and use a potometer to investigate the effect of a named	United Kingdom, like other high-
environmental variable on the rate of transpiration.	income countries, obesity is
	associated with social and
	economic deprivation, with a
	higher prevalence in the lowest

	income quintile. Current research suggests that this gradient is embedded, with little evidence of change over time
	<u>New analysis reveals stark</u> inequalities in obesity rates across England The King's Fund (kingsfund.org.uk)