Meden School Curriculum Planning									
Subject	Biology	Year Group	8	Sequence No.	1	Торіс	Inheritance		
							and variation		

Retrieval	Core Knowledge	Student Thinking
What do teachers need retrieve from students before they start teaching new content ?	What specific ambitious knowledge do teachers need teach students in this sequence of learning?	What real life examples can be applied to this sequence of learning to development of our students thinking, encouraging them to see the inequalities around them and 'do something about them!'
Year 2 Students should be taught to notice that animals, including humans, have offspring which grow into adults KS3 Learning Year 7 Students should be taught about reproduction including the male and female reproduction cells.	 Variation is the differences among/between a species. Different individuals have characteristics which make them unique. These characteristics can be inherited, environmental or sometimes a mixture of both. Inherited characteristics are ones we are born with. Environmental characteristics are ones we are not born with but are shaped by our environment and choices. L2: What controls the way I look? All our cells contain DNA, which is found in the nucleus of the cell. Every cell (bar gametes) contain 46 chromosomes, except for our gametes which contain 23 chromosomes. These chromosomes are where inherited characteristics come from. The gametes are the sex cells (egg cell and sperm cell), meaning we get half (23) our chromosomes from our biological mother and half (23) from our biological father. At 	 breeding? Facilitate the moral debate between farmers and animal rights activists. L5: Could I feed the ever-growing population through plant cloning? Could a new system using cloning strategies find a way to grow more crops to feed the growing population?
Students should have the knowledge of fertilisation and the development of a baby.	 fertilisation the egg cell nucleus and sperm cell nucleus fuse together combining their chromosomes. These chromosomes have small sections on them called genes which are the instructions for inherited characteristics. L3: Can I choose what an animal will look like? Selective breeding is a process in which organisms can be carefully bred to increase the chances of the offspring having the desired characteristics. The four stages of selective breeding are: Decide which characteristics are important / which characteristics you want to select for. Choose parents that show these characteristics. Select the best offspring from parents to breed the next generation. Repeat this process, continuously. 	L9: Should we be allowed to test for genetic disorders before birth? Facilitate the moral debate of life is a life.

L4: Do I agree or disagree with selective breeding? Selective breeding has many considerations including, economical, ethical, and social. Positives for selective breeding are: It can produce new varieties of crops, higher yield , shorter growing times, ability to grow crops in varied climates and more profit for farmers . Negative points to selective breeding are: Exposing the organism to vulnerability to diseases and pathogens . Narrowing of the gene pool due to inbreeding this leads to a loss of variety among a population.	
L5: How would I clone a plant? A clone is an organism that is genetically identical to its parent. Plant cloning can be carried out using a method that involves asexual reproduction (no fusion of the gametes required). The method to cloning plants is to take cuttings from a parent plant. The cutting is then dipped in rooting powder which contains plant hormones to encourage the growth of the roots.	
L6: How would I clone an animal? A clone is an organism that is genetically identical to its parent. The process to make a clone uses asexual reproduction. Identical twins are natural clones as they come from the same zygote which has split; therefore they contain the exact same DNA. Dolly the sheep was the first mammal to be cloned in Scotland. Dolly was cloned using a process called somatic cell nuclear transfer. This process takes the DNA from female A and fuses it with the nucleus from female B. The embryo is then implanted into the uterus of a foster mother. Once the lamb is born it will be genetically identical to female A as the DNA was taken from her. The positives to animal cloning are all the new offspring will have the desired characteristics. The disadvantages to cloning are if a clone is susceptible to diseases, they all will be, and it can lead to less variation within a population.	
L7: What is the chance of having a boy? Biological sex will be determined by the sperm that fertilises the egg. When the gametes are within the male are produced one sperm will contain an X chromosome and one sperm will contain a Y chromosome . Both female gametes (egg cells) will contain an X chromosome . A genetic cross diagram can be used to calculate that there is always a 50% chance of having either a male or female offspring .	
L8: Why do I have blue eyes when both my parents have brown eyes? Chromosomes can either be dominant or recessive. Parents can be either homozygous dominant, homozygous recessive or heterozygous. Heterozygous alleles mean that the dominant phenotype will be expressed however the parent will carry the allele for the recessive characteristic. Therefore, if two parents who are carriers reproduce there would be a 25% chance of the recessive alleles pairing up to produce a homozygous recessive offspring.	

	L9: Why are some people born with disorders? Chromosomes can either be dominant or recessive . Parents can be either homozygous dominant , homozygous recessive or heterozygous . Genetic disorders can be inherited from parents who do not have the disorder if they are both carriers of the gene . An example is cystic fibrosis where a recessive gene will cause the offspring to have the condition that affects the lungs . Parents can be screened to see if they carry the gene for cystic fibrosis . Genetic cross diagrams can be used to calculate the probability of an offspring being born with a genetic disorder . L10: a simple model of chromosomes, genes and DNA in heredity, including the part played by Watson, Crick, Wilkins and Franklin in the development of the DNA model L11: EoTT L12: GPA	
--	--	--