Meden School Curriculum Planning								
Subject	Biology	Year Group	9	Sequence No.	1	Торіс	Enzyme	
							Activity	

Retrieval	Core Knowledge	Student Thinking
What do teachers need retrieve from	What specific ambitious knowledge do teachers need teach students in this sequence of learning?	What real life examples can be applied to
students before they start teaching new		this sequence of learning to development
content?		of our students thinking, encouraging
		them to see the inequalities around them
		and 'do something about them!'
	L1: Metabolism is the sum of all chemical reactions in the body or single cell. Addressing the	L1: Introduction to the Krebs Cycle studied
	misconception that metabolism is not digestion and understanding that cellular reactions are either	further at KS%.
	anabolic or catabolic, with anabolic creating molecules and catabolic breaking molecules. Introduction	Enzymes are used in biological washing
	to the Krebs cycle and the First Law of Thermodynamics, that energy is conserved and not created or	powder.
	destroyed. Enzymes introduced explaining that they speed up chemical reactions and will either break a molecule or form a molecule.	
	L2: Expanding knowledge on enzymes, that they are biological catalysts and so speed up chemical	
	reactions. Understanding that enzymes are highly folded proteins, found in every cell, they break	L2: Quoting Dr. Wolfenden and his work
	molecules or form molecules, they do not change or get used up during reactions and that without	on enzymes, which relates to our DNA
	them we would die. Identifying the structures of an enzyme and being able to label a diagram with the	production.
	correct terminology, active site, substrate and product and then explaining how this links to the lock and	
	key theory.	
	L3: Expanding knowledge on enzymes further and understanding of the lock and key theory, that only	L3: Enzymes optimum temperature in the
	one substrate fits into one enzyme's active site, just like how a key only fits one lock. Leading onto	human body is 37°C.
	enzyme active sites changing shape, due to extreme temperature and extreme pH which is known as	
	denatured. Defining the term optimum, most favourable condition.	
	L4: Retrieval of knowledge of the organs of the digestive system, salivary glands, oesophagus, stomach,	L4: Understanding what bile is in the body
	pancreas, liver, gall bladder, small intestine, large intestine, rectum and anus. Expanding knowledge of	and enzymes in our digestive system.
	the digestive enzymes , knowing enzyme names, what they produce and where they are produced in the	
	body. Lipase, breaks down lipids (fats) into fatty acids and glycerol and it is produced in the pancreas.	
	Protease breaks down proteins into amino acids and is produced in the stomach. Amylase is a	
	carbohydrase which breaks down carbohydrates into sugars and is produced in the salivary glands.	
	Retrieving previous learning on bile , that it neutralises stomach acid because it is alkaline and that it	
	emulsifies fats into tiny droplets and that it is produced in the liver, stored in the gall bladder and	

released into the small intestine. Understanding effect of cold temperatures on enzymes that it will slow	
reactions down.	
L5: GPA lesson consolidating knowledge on enzymes. Enzymes are biological catalysts and so speed up	
chemical reactions. Understanding that enzymes are highly folded proteins, found in every cell, they	
break molecules or form molecules, they do not change or get used up during reactions and that	
without them we would die. Identifying the structures of an enzyme and being able to label a diagram	
with the correct terminology, active site, substrate and product and then explaining how this links to the	
lock and key theory. One substrate fits into one enzyme's active site, just like how a key only fits one	
lock. Leading onto enzyme active sites changing shape, due to extreme temperature and extreme pH	
which is known as denatured .	
L6: Preparation for the enzyme practical. Understanding that amylase is an enzyme that breaks down	
starch into sugar and using this to test how different pH levels will affect enzyme activity. lodine is used	
to test for starch and will turn from an orange-brown colour to a blue-black colour if starch is present.	
Students must be aware of the control variables so that these variables do not affect the experiment,	
variables such as temperature and amount of starch .	
L7: Conduct the enzyme practical, investigating the affect of pH levels on enzyme activity.	
Understanding the results to conclude whether the enzyme has denatured or not and reflecting on areas	
where they could improve their practical skills.	
L8: Investigating the connection between enzymes and decay. Understanding that detritivores are	L8: Understanding decay when an
organisms that feed on dead organic matter including faeces (detritus) and knowing specific examples	organism dies
such as a fly. Discovering decomposers are bacteria and fungi and that they break down molecules, using	
enzymes by secreting them out onto the surface of dead organisms, however they cannot break down	
inorganic molecules and this is all a part of a nutrient cycle. Knowing that the rate of decomposition can	
be affected by temperature, oxygen availability, water availability and the number of decay organisms,	
linking temperature into enzyme activity, so an extreme temperature will denature an enzyme.	L9/L10: Real world application of enzymes
L9: Students will undertake a research project, discovering industries that use enzymes, for example the	in industry.
food industry, washing product industries and medical industries to prevent allergies.	
L10: Students present their findings from their research project during a presentation to the rest of the	
class.	
L11: EOTT	
L12: GPA	