Meden School Curriculum Planning									
Subject	Physics	Year Group	7	Sequence No.	4	Торіс	Simple Circuits		

Retrieval	Core Knowledge	Student Thinking
What do teachers need retrieve from students before they start teaching new content ?	What specific ambitious knowledge do teachers need teach students in this sequence of learning?	What real life examples can be applied to this sequence of learning to development of our students thinking, encouraging them to see the inequalities around them and 'do something about them!'
KS2 Electricity	L1: All substances are made up atoms, atoms contain positive and negatives charges. The negative	
L2Electricity is either mains or battery	charges are due to sub-atomic particles called electrons; the positive charges are due to sub-atomic	
supplies. Batteries provide portable	particles called protons . Electrons are on the outside of atoms, protons are in the middle of an atom, the	
electricity.	middle is called the nucleus . Substances are usually neutral because they have the same number of	
	positives and negatives. Friction causes the transfer of electrons between materials that are insulators or	
	insulated. The positive charges cannot move. A build-up of charge is called Static Electricity. Conductors	
	allow electrons to flow through them, insulators do not allow electrons to flow through them.	
	L2: Materials that lose electrons become positively charged, materials that gain electrons become	
12 Electrical size its must be accorded.	negatively charged. Like charges repel each other, opposite charges attract each other.	
L3 Electrical circuits must be complete.	L3: Electricity is an energy transfer mechanism. Electricity is a flow of electrons carry energy, unlike	
sircuits to work. Electrical components	Static electricity where the electrons are not moving. The now of electrons is called the electrical current .	
have symbols and circuit diagrams are	negative terminal in a circuit. This is called Conventional Current, and we still use this today as many of	
used to represent systems	the rules that explain the nature of electricity are based on the concent of conventional current. We now	
used to represent systems.	know that electricity if the flow of electrons and this must flow from negative to positive as electrons	
Switches are used to control circuits	carry a negative charge and will only flow towards a positive charge. An increase in electron flow causes a	
	bigger current. Current in measured in Amps (symbol is a capital A as it is named after a person. Andre-	
	Marie Ampere). An ammeter measures the strength of a current.	
	L4 The flow of electrons needs a complete pathway joining the negative terminal to the positive. This	
	pathway is called an electrical circuit . For a current to flow there needs to be an energy source and a	
	complete circuit. Circuit diagrams are an international way to represent electrical circuit. All components	
	are presented by a symbol and connecting wires by straight lines. Circuit diagrams are regular shapes	
	drawn with rulers to make them easier to follow.	
	L5: A series circuit has only one pathway from the power supply, all components are linked together in a	
	single pathway. Current is never used up in an electrical circuit because the number of electrons stays	

L5 More batteries in a circuit make bulbs	the same. The size of the current is the same anywhere is a series circuit. Adding bulbs to a circuit	
brighter, or stronger batteries with a	reduces the size of the current as the electrons slow down and so bulbs get dimmer. Adding more cells to	
higher voltage make bulbs brighter	a series circuit increases the current because more cells, means more energy for the electrons and so	
Adding more bulbs makes bulbs dimmer.	they move more quickly. If one bulb breaks in a series circuit the circuit is not complete and all bulbs go	
	out.	
	L6 Parallel circuits have more than one pathway for the electricity to flow through, the current divides	
	between the different pathways but always added up to the initial current leaving the power supply.	
	Adding another pathway to a circuit increases the current leaving the battery so the current goes up, this	
	means the brightness of the bulbs stays the same. If a bulb breaks in one pathway only that pathway is	
	incomplete and so all other bulbs stay on, parallel circuits are used for lights in houses, fairy lights and car	
	lights for this reason.	
	L7 Assessment task	
L8 Electrical safety includes never sticking	L8 Mains electricity has a voltage of 230V and is high enough to kill. An electric shock can cause electrical	
fingers, pens or other objects into plug	burns, muscle spasms, paralysis or may stop the heart beating. Mains electrical wires are insulated to	
sockets. Not touching switches and plug	prevent electric shock, they contain three separately coated wires, live wire is coated in brown	
sockets with wet hands. Never using	insulation, the neutral wire is coated in blue insulation and the earth wire is coated in yellow/green	
mains appliances near water.	stripped insulation. Plugs have three pins, live connected to the brown live wire, neutral connected to	
	blue wires and earth connected to a yellow/green wire. Plugs also have a fuse which is designed to melt	
	and cut of the current if the current is too high. The earth wire is a safety feature and is connected to the	
	casing of metal appliances. If the live wire touches the metal casing it becomes "live" with electricity and	
	would case an electric shock if touched. The earth wire detects the current in the metal casing and turns	
	off the electricity supply. A short circuit occurs when a parallel branch is created accidently with no	
	components in, electricity will follow through this branch instead of the correct part of the circuit due to	
	its very low resistance. Short circuits often get very hot and are a major cause of electrical fires.	
	L9 In 1791, Luigi Galvani was dissecting a frog when his scalpel touched a nerve and caused the leg to	
	twitch. He thought that this meant electricity was made inside living things. Mary Shelley based her idea	
	of Frankenstein reanimating his "monster" using electricity from lightening on the work of Galvani. Volts	
	disproved Galvani but building the first batteries. They required two different metals and an acid. The	
	first battery was called a Voltaic Pile. Fruit batteries are based on the same idea, Two different metals	
	inserted in a lemon and connect in a circuit will produce a current.	