Meden School Curriculum Planning							
Subject	Physics	Year Group	7	Sequence No.	2	Topic	Forces and
	-						Magnetism

Retrieval	Core Knowledge	Student Thinking
What do teachers need retrieve from students before they start teaching new content ?	What specific ambitious knowledge do teachers need teach students in this sequence of learning?	What real life examples can be applied to this sequence of learning to development of our students thinking, encouraging them to see the inequalities around them and 'do something about them!'
KS2 Y3: Know that forces are pushes or pulls. Notice that unbalanced forces can cause an object to move. Observe how different surfaces produce different levels of friction which can cause an object to slow down. Notice that some forces need contact between 2 objects, but other forces such as magnets can act at a distance. Observe how magnets attract or repel	 L1: Types of Forces: Name a variety of forces including push, pull, friction, gravity, air resistance, reaction, weight, upthrust, magnetism and electrostatic. Different forces can be labelled on different objects. Size of force can be indicated by the size of the Force arrows. A force will either change the speed, shape or direction of the object it is acting on. Contact forces can be identified as forces that require contact with an object for the effects of the force to be experienced. Contact forces act in pairs on an object. For every action there is an equal and opposite reaction. Contact forces can be named and labelled on diagrams. not all forces require contact with the object. Non-contact forced can exert a force on an object without physical contact with it. Air resistance is NOT a non-contact force (common misconception to address). Non-contact forces can be quite easily demonstrated using balloon and magnets. 	
each other and attract some materials and not others.	feels frictional forces. These forces act in the opposite direction to the movement . Friction makes it harder for things to move. Know that lubrication is putting oil between surfaces to reduce friction. Understand that on a microscopic level , objects that appear smooth are not necessarily as smooth as they think. Know that mechanical engineers need a good understanding of forces. Through practical, investigate different frictional surfaces and calculate a mean by adding all results together and dividing by how many there are. L3 & 4: Drag: know that racing cars are more streamlined so they can go faster . Drag is higher when an object goes faster because the air hits it harder so a greater backwards force . If the	

object is streamlined many of the particles get swept around the object instead of hitting it,	
so the drag force is less. Through practical, investigate different shapes and their effect on drag,	
also calculate a mean by adding all results together and dividing by how many there are.	
L5: Balanced forces: Know that the size of force arrow on diagrams can be used to identify	
balanced and unbalanced forces. Newton's Frist Law: if forces are balanced on an object it will	
remain at rest or continue to move at a constant speed. For forces to be balanced they must	
add up to 0 . If forces are in opposite directions you take them away , if they are in the same	
direction you add them together. This is resultant force. Newton also stated if forces are	
unbalanced an object at rest will start to move or if it is already moving; speed up, slow down	
or change direction. Practise.	
16: Hooke's Law: Engineers need to be able to work out how easy or hard it is to stratch or	
squash a spring Hooke's Law can be investigated using springs, plot a graph of extension (cm)	
squash a spring. Hooke's law states that the extension of an elastic material is directly	
propertienal to the force applied. All this means is that as the force applied increases the	
proportional to the force applied. All this means is that as the force applied increases, the	
extension will increase in proportion . Name springs in everyday life : brakes, clothes pegs and	
CIOCKS.	
L7: A magnet is a piece of metal that attracts other metals. A bar magnet is a magnetised piece	
of steel. Iron , cobalt and nickel are elements that are magnetic. Steel is magnetic because it is	
mostly made of iron and some carbon. A non-contact force is a force where the objects	
involved are not touching. The poles of a magnet are known as North and South . Permanent	
means always. Magnets are used in scrap yards.	
L8: By way of a practical. Opposite poles of a magnet attract, like (which means the same)	
poles repel . A suspended, freely moving bar magnet will line up with the Earth's magnetic field .	
L9: Know the shape of magnetic field lines around a bar magnet. Know how to reveal the	
magnetic field lines by gently shaking iron filings over a bar magnet covered in clingfilm on a	
white sheet of paper. Identify the difference between the magnetic field lines of attracting and	
repelling magnets. Magnetic force is stronger the closer the field lines are. Magnetic field lines	
enter the South pole and leave the North pole.	
LTD: TODIC REVIEW and REVISION	

L11: test	
L12: GPA	