Meden School Curriculum Planning								
Subject	GCSE Computer Science	Year Group	10	Sequence No. Representation	2	Topic		

Tier 3 List:

Bit, nibble, byte, kilo, mega, giga, tera, peta, binary, Bit depth, sample rate, colour depth, pixel, bit per character, Binary shift, shift left, shift right, most significant bit, least significant bit, Character set, ASCII, Unicode, metadata, hertz, compression, lossy, lossless

Week Number	Retrieval	Core Knowledge	Student Thinking
-	What do teachers need to retrieve from students before they start teaching new content?	What specific ambitious knowledge do teachers need to teach students in this sequence of learning?	What real life examples can be applied to this sequence of learning to develop our students' thinking, encouraging them to see the inequalities around them and 'do something about them!'
1: U2: Data Representation, Units and Binary	KS3 - students completed topics on binary and will be able to convert from denary to binary and binary to denary.	Define the terms bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte and petabyte Understand that data needs to be converted into a binary format to be processed by a computer Convert positive denary whole numbers (0-255) into 8bit binary numbers and vice versa - Nibble - 4 bits (half a byte) - Byte-8 bits - Kilobyte (KB) - 1000 bytes - Megabyte (MB) - 1000 kilobytes - Gigabyte (GB) - 1000 megabytes - Terabyte (TB) - 1000 gigabytes The binary system on computers uses combinations of Os and 1s.	Students will be able to compare computer specifications and suggest the most appropriate for given audience and purpose. Further embed links within ICT / Computer science and Mathematics. Prepare students for further studies at A-Level and University for Computer Science. Understand how the impact of file size can affect disk space, therefore impacting day to day storage practises.

$\left.\begin{array}{|l|l|l|l|}\hline & & \begin{array}{l}\text { In everyday life, we use numbers based on } \\ \text { combinations of the digits between } 0 \text { and } 9 . \text { This } \\ \text { counting system is known as decimal, denary or base } \\ 10 .\end{array} & \begin{array}{l}\text { Photography links regarding file } \\ \text { sizes and how these can be used } \\ \text { cross subjects. }\end{array} \\ \text { A number base indicates how many digits are available } \\ \text { within a numerical system. Denary is known as base 10 } \\ \text { because there are ten choices of digits between } 0 \text { and } \\ \text { 9. For binary numbers there are only two possible } \\ \text { digits available: } 0 \text { or 1. The binary system is also known } \\ \text { as base 2. } \\ \text { All denary numbers have a binary equivalent and it is } \\ \text { possible to convert between denary and binary. }\end{array}\right\}$

		Explain the relationship between the number of bits per character in a character set, and the number of characters that can be represented using: - ASCII - Extended ASCII - Unicode Text and numbers can be encoded in a computer as patterns of binary digits. Hexadecimal is a shortcut for representing binary. ASCII and Unicode are important character sets that are used as standard. The ASCII character set is a 7-bit set of codes that allows 128 different characters. That is enough for every upper-case letter, lower-case letter, digit and punctuation mark on most keyboards. ASCII is only used for the English language. Extended ASCII code is an 8-bit character set that represents 256 different characters, making it possible to use characters such as é or ©. Extended ASCII is useful for European languages. Unicode uses between 8 and 32 bits per character, so it can represent characters from languages from all around the world. It is commonly used across the internet. As it is larger than ASCII, it might take up more storage space when saving documents. Global companies, like Facebook and Google, would not use the ASCII character set because their users communicate in many different languages.	

6: U2: Data Representation, Compression	KS3 - understanding of computer language and the use of binary for storage	Explain the need for compression Describe the difference between lossy and lossless compression Lossless - A form of compression that encodes digital files without losing detail. Files can also be restored to their uncompressed quality $\underline{\text { Lossy }- \text { A form of compression that reduces digital file }}$	sizes by removing data

